Problem Partitioning via Proof Prefixes

Zachary Battleman, Joseph E. Reeves, and Marijn J. H. Heule

Carnegie Mellon University

SAT 2025

SAT's Mathematical Success Stories

SAT has had monumental success in resolving open math problems

- ▶ Boolean Pythagorean Triples (2016)
- ► Schur Number 5 (2018)
- ► Keller's Conjecture (2020)
- ▶ Packing Chr. Number of the Plane (2023)
- ► The Empty Hexagon Problem (2024)

SAT's Mathematical Success Stories

SAT has had monumental success in resolving open math problems

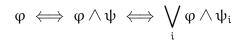
- ▶ Boolean Pythagorean Triples (2016)
- ► Schur Number 5 (2018)
- ► Keller's Conjecture (2020)
- ▶ Packing Chr. Number of the Plane (2023)
- ► The Empty Hexagon Problem (2024)

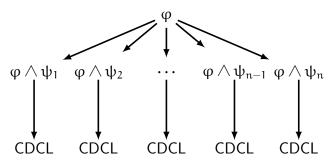
All of these would be impossible without massive parallelism via Cube and Conquer (CNC).

Cube and Conquer

Cube and Conquer (CnC) is a technique for solving SAT formulas in parallel.

- Boolean formula φ
- A partition of conjunctions (cubes) $\{\psi_i\}$ such that $\psi := \bigvee_i \psi_i$ is a tautology



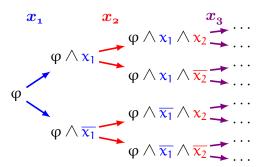


Cube and Conquer

Cube and Conquer (CnC) is a technique for solving SAT formulas in parallel.

- Boolean formula φ
- A partition of conjunctions (cubes) $\{\psi_i\}$ such that $\psi := \bigvee_i \psi_i$ is a tautology

$$\psi = \{ \ \sigma_1 x_1 \wedge \ldots \wedge \sigma_n x_n \ | \ \sigma_i \in \{-1,1\} \}$$



SAT's Mathematical Success Stories, Revisited

- ▶ Boolean Pythagorean Triples (2016)
- ► Schur Number 5 (2018)
- ► Keller's Conjecture (2020)
- ▶ Packing Chr. Number of the Plane (2023)
- ► The Empty Hexagon Problem (2024)

SAT's Mathematical Success Stories, Revisited

- ▶ Boolean Pythagorean Triples (2016) Automatic Partition
- ► Schur Number 5 (2018) Automatic Partition
- ► Keller's Conjecture (2020) Manual Partition
- ▶ Packing Chr. Number of the Plane (2023) Manual Partition
- ► The Empty Hexagon Problem (2024) Manual Partition

Requirements for making a manual partition

Requirements for making a manual partition

Expert knowledge of SAT solvers

Requirements for making a manual partition

- ► Expert knowledge of SAT solvers
- ► Expert knowledge of the problem

Requirements for making a manual partition

- ► Expert knowledge of SAT solvers
- ► Expert knowledge of the problem
- ► Lots of manual experiments

Requirements for making a manual partition

- Expert knowledge of SAT solvers
- ► Expert knowledge of the problem
- ► Lots of manual experiments

"For some problems, including Keller's Conjecture and The Empty Hexagon problem, I spent as much time on the manual split as on the encoding."

- Marijn Heule

How can we come up with better automatic partitions?

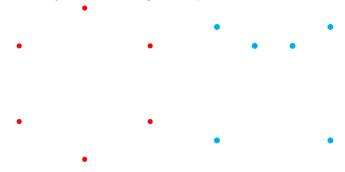
The Short Answer

formula	baseline	March (SoTA)			Proofix (Ours)		
	1 core	1 core	32 core	Pre.	1 core	32 core	Pre.
max10	6, 282	1,939	920	0	7,645	238	29
cross13	> 80,000	?	> 10,000	43	64,610	2,206	71
$\mu_{5}(13)$	2,317	2,526	181	8	1,367	84	80

► Our Tool (Proofix) outperforms March (SoTA) on tested combinatorial problem.

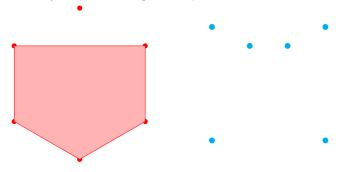
Minimizing Convex Pentagons in the Plane

Subercaseaux et al. used SAT to compute new bounds on $\mu_5(n)$, the minimum number of convex pentagons in the plane induced by n points in general position.



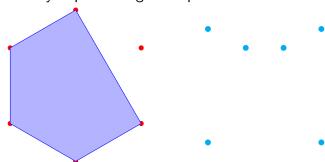
Minimizing Convex Pentagons in the Plane

Subercaseaux et al. used SAT to compute new bounds on $\mu_5(n)$, the minimum number of convex pentagons in the plane induced by n points in general position.



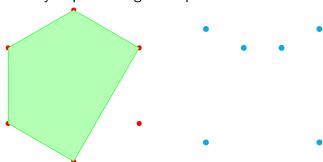
Minimizing Convex Pentagons in the Plane

Subercaseaux et al. used SAT to compute new bounds on $\mu_5(n)$, the minimum number of convex pentagons in the plane induced by n points in general position.



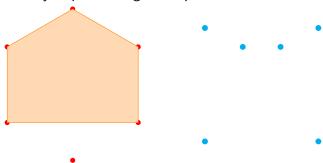
Minimizing Convex Pentagons in the Plane

Subercaseaux et al. used SAT to compute new bounds on $\mu_5(n)$, the minimum number of convex pentagons in the plane induced by n points in general position.



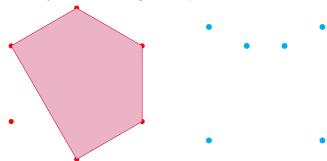
Minimizing Convex Pentagons in the Plane

Subercaseaux et al. used SAT to compute new bounds on $\mu_5(n)$, the minimum number of convex pentagons in the plane induced by n points in general position.



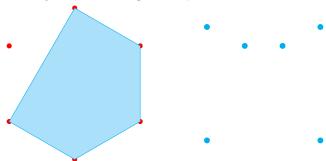
Minimizing Convex Pentagons in the Plane

Subercaseaux et al. used SAT to compute new bounds on $\mu_5(n)$, the minimum number of convex pentagons in the plane induced by n points in general position.

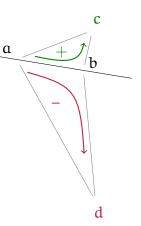


Minimizing Convex Pentagons in the Plane

Subercaseaux et al. used SAT to compute new bounds on $\mu_5(n)$, the minimum number of convex pentagons in the plane induced by n points in general position.

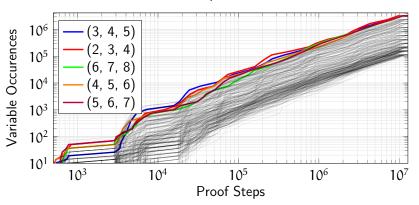


- $\sigma_{i,j,k}$: whether the arc formed by points i, j, k are concave or convex.
- ▶ Best splitting variables of the form $\sigma_{i,i+1,i+2}$ near the "center" of the drawing.
 - e.g. With 13 points, optimal variable is σ_{5,6,7}

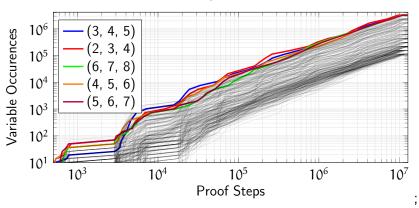


- ▶ Best variables of the form $\sigma_{i,i+1,i+2}$ near the "center" of the drawing.
 - e.g. With 13 points, optimal variable is $\sigma_{5,6,7}$

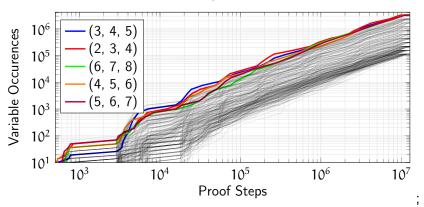
DRAT Addition Steps vs. Variable Occurences



DRAT Addition Steps vs. Variable Occurences

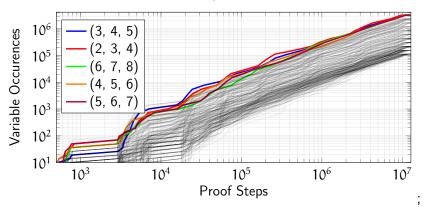


DRAT Addition Steps vs. Variable Occurences



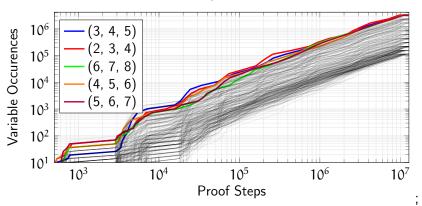
1. The best splitting variables rise to the top.

DRAT Addition Steps vs. Variable Occurences



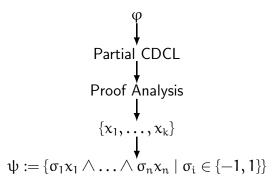
- 1. The best splitting variables rise to the top.
- 2. When variables rise to the top, they tend to stay there.

DRAT Addition Steps vs. Variable Occurences

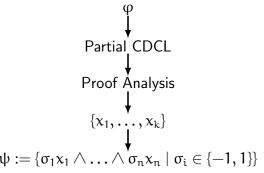


- 1. The best splitting variables rise to the top.
- 2. When variables rise to the top, they tend to stay there.
- 3. The best variables rise to the top very quickly.

A First Pass at Using Proofs for Splitting



A First Pass at Using Proofs for Splitting

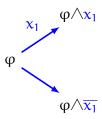


This doesn't work well

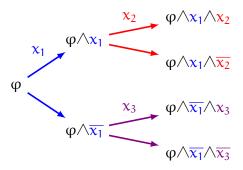
- Lower ranked variables do not do as well in general
- ► Two similar variables can be ranked highly so splitting on both is counter-productive.

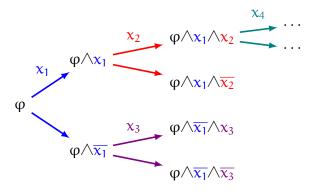
φ

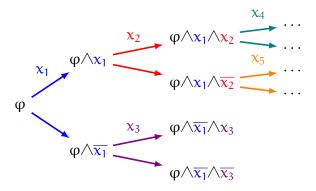
 ${\sf Z.\;Battleman} \\ {\sf 10\;/\;23}$



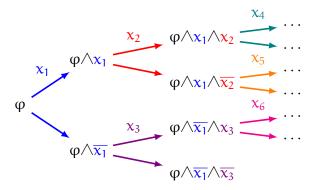




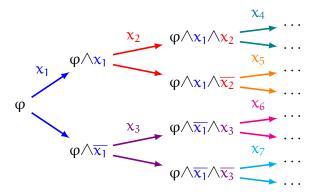




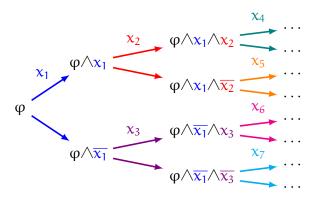
A Second Attempt



A Second Attempt

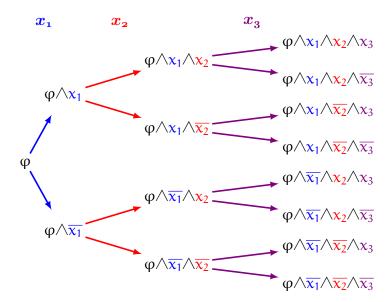


A Second Attempt



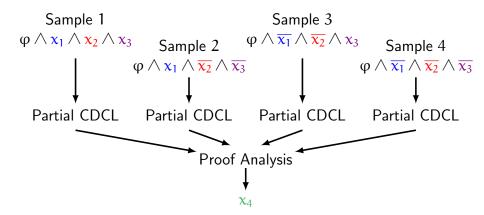
- ▶ For cubes of size n, need $2^n 1$ proof prefixes
- ► Too expensive!

A Middle-Ground Approach

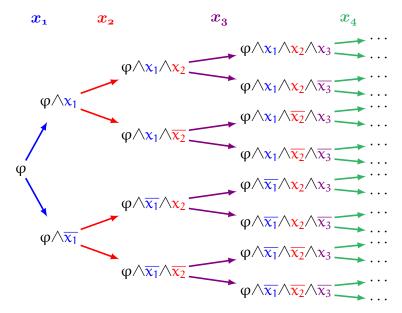


A Middle-Ground Approach

$$S = \{x_1, x_2, x_3\}$$



A Middle-Ground Approach

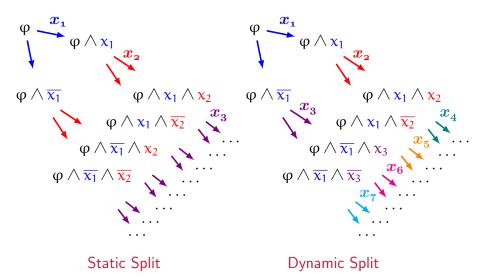


Proofix

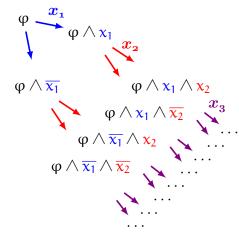
This third approach was developed into a tool called *Proofix*.

- User-Friendly
- ► Fairly little computational overhead
- Sits on top of any proof-producing SAT solver
- \$ python3 proofix.py
 - --cnf < cnf >
 - —cube-size <n>
 - —cutoff <c>
 - $--\log < \log >$

Static vs. Dynamic Splits



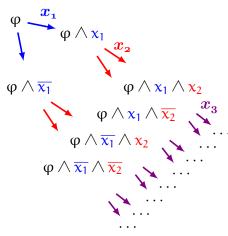
Static splits remedy the opacity of large computer proofs:



Static Split

Static splits remedy the opacity of large computer proofs:

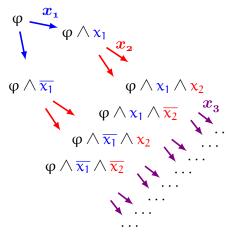
Demystifying solver reasoning.



Static Split

Static splits remedy the opacity of large computer proofs:

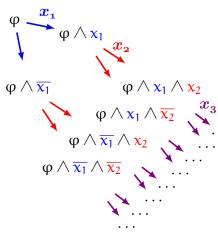
- Demystifying solver reasoning.
- Pinpointing crucial variables.



Static Split

Static splits remedy the opacity of large computer proofs:

- Demystifying solver reasoning.
- Pinpointing crucial variables.
- ► Facilitating generalization.



Static Split

Cardinality-Based Splitting

A cardinality constraint compares the sum over a set of data variables to a bound:

$$x_1 + x_2 + x_3 + \overline{x}_4 \le 2$$

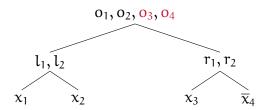
The totalizer encoding uses auxiliary variables to count the sums of data variables hierarchically

Cardinality-Based Splitting

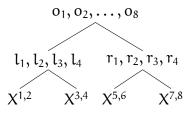
A cardinality constraint compares the sum over a set of data variables to a bound:

$$x_1 + x_2 + x_3 + \overline{x}_4 \leq 2$$

The totalizer encoding uses auxiliary variables to count the sums of data variables hierarchically

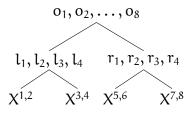


$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 \le 5$$



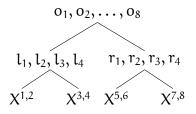
▶ Pick variables based on semantic meaning

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 \le 5$$



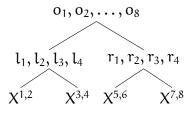
- ► Pick variables based on semantic meaning
- \triangleright For example, l_2 is a good choice:
 - $ightharpoonup l_2 = T$, at least 2 from x_1, x_2, x_3, x_4 .
 - $ightharpoonup l_2 = F$, at most 1 from x_1, x_2, x_3, x_4 .

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 \le 5$$



- ► Pick variables based on semantic meaning
- \triangleright For example, l_2 is a good choice:
 - ▶ $l_2 = T$, at least 2 from x_1, x_2, x_3, x_4 .
 - ▶ $l_2 = F$, at most 1 from x_1, x_2, x_3, x_4 .
- ightharpoonup On the other hand, r_4 is a bad choice:
 - $ightharpoonup r_4 = T$, all of x_5, x_6, x_7, x_8 .
 - $r_4 = F$, at most 3 from x_5, x_6, x_7, x_8 .

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 \le 5$$



- ► Pick variables based on semantic meaning
- \triangleright For example, l_2 is a good choice:
 - \triangleright l₂ = T, at least 2 from x_1, x_2, x_3, x_4 .
 - $ightharpoonup l_2 = F$, at most 1 from x_1, x_2, x_3, x_4 .
- On the other hand, r₄ is a bad choice:
 - $ightharpoonup r_4 = T$, all of x_5, x_6, x_7, x_8 .
 - $r_4 = F$, at most 3 from x_5, x_6, x_7, x_8 .
- Assumes uniform "activity" of positive literals.

MaxSAT competition Formulas

formula	baseline	March			Proofix			Totalizer Splitting	
	1 core	1 core	32 core	Pre.	1 core	32 core	Pre.	1 core	32 core
judge	3,654	4,893	3,162	219	3,437	2,447	19	7,851	4,289
mbd	2, 170	2,914	313	287	2,512	409	37	3,784	290
optic	1,236	908	195	23	708	22	45	1,150	135
uaq	2,520	1,408	453	4	970	62	43	1,960	129
mindset	2, 162	18,018	1,372	357	16,375	2, 252	42	19,002	1,164

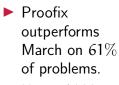
- ▶ Proofix is 21% better than March on average.
- ► Totalizer splitting is 18% better than March on average.

Stability under Search Parameters

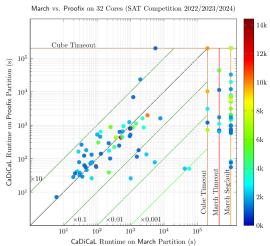
Formula	# "Good"	# Variables	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\chi_{ ho}(\mathbb{Z}^2)$	63	7,669	0/15 0/15	12/15 12/15 11/15			
$\mu_5(15)$	13	58,826	7/15 5/15	4/15 3/13 4/15			
7gon-6hole	20	28,878	2/15 8/15	13/15 12/15 12/15			

- Proofix is able to very quickly identify "good" splitting variables.
- ► On many problems, once a "good" variable is identified, it stays "good" on deeper cube generations.

SAT competition Problems

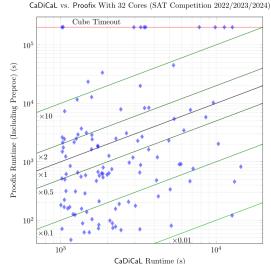


► Up to 1000× improvement!



SAT competition Problems

- ▶ Proofix outperforms CaDiCaL on 63% of problems (including preprocessing).
- ► Up to 100× improvement!



Difficult Combinatorial Problems

formula	baseline	March						Totalizer Splitting	
	1 core	1 core	32 core	Pre.	1 core	32 core	Pre.	1 core	32 core
max10	6, 282	1,939	920	0	7,645	238	29	2,498	269
cross13	> 80,000	?	> 10,000	43	64,610	2, 206	71	77,664	3,125
$\mu_5(13)$	2,317	2,526	181	8	1,367	84	80	2,355	543

- ▶ Proofix outperforms March universally; by at least 68% on average.
- ► Totalizer splitting is less effective, with only marginal improvements on 2/3 problems.

Z. Battleman 20 / 23

Early Uses of Proofix

People are already using Proofix for solving their own difficult combinatorial problems!

- \triangleright Crossing numbers of R(5,5)-good cycle graphs.
- ightharpoonup Classifying R(5, 5)-good strongly regular graphs.
- ► Sharper asymptotics on Norin's conjecture.
- ► Smaller proofs of the Keller graph max clique problem.
- \blacktriangleright Disproving R(4,7)-good graphs with assumed structure.

Early Uses of Proofix

People are already using Proofix for solving their own difficult combinatorial problems!

- \triangleright Crossing numbers of R(5,5)-good cycle graphs.
- ightharpoonup Classifying R(5, 5)-good strongly regular graphs.
- ► Sharper asymptotics on Norin's conjecture.
- ► Smaller proofs of the Keller graph max clique problem.
- \triangleright Disproving R(4,7)-good graphs with assumed structure.
 - ▶ Just over 13.4 million CPU seconds across all cubes.
 - ▶ Could not be solved, or even attempted, by existing tools.

Future Work

- ▶ Understand better why this tool works.
- ► Find better extraction heuristics.
- Explore other proof formats.
- ► Solve more problems!

Z. Battleman 22 / 23

Thank you! :D

Link to full paper

Z. Battleman 23 / 23